Exercise 6

Verify the Cauchy-Schwarz inequality and the triangle inequality for the vectors in Exercises 3 to 6.

$$
\mathbf{x}=(1,0,0,1), \mathbf{y}=(-1,0,0,1)
$$

Solution

Cauchy-Schwarz Inequality

Check the Cauchy-Schwarz inequality $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
|\mathbf{x} \cdot \mathbf{y}| & =|(1)(-1)+(0)(0)+(0)(0)+(1)(1)|=|0|=0 \\
\|\mathbf{x}\| & =\sqrt{1^{2}+0^{2}+0^{2}+1^{2}}=\sqrt{2} \\
\|\mathbf{y}\| & =\sqrt{(-1)^{2}+0^{2}+0^{2}+1^{2}}=\sqrt{2}
\end{aligned}
$$

As a result,

$$
|\mathbf{x} \cdot \mathbf{y}|=0 \leq \sqrt{2} \sqrt{2}=\|\mathbf{x}\|\|\mathbf{y}\|,
$$

which means the Cauchy-Schwarz inequality is satisfied.

Triangle Inequality

Now check the triangle inequality $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for the given vectors.

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =(1,0,0,1)+(-1,0,0,1)=(0,0,0,2) \\
\|\mathbf{x}+\mathbf{y}\| & =\sqrt{0^{2}+0^{2}+0^{2}+2^{2}}=2 \\
\|\mathbf{x}\| & =\sqrt{1^{2}+0^{2}+0^{2}+1^{2}}=\sqrt{2} \\
\|\mathbf{y}\| & =\sqrt{(-1)^{2}+0^{2}+0^{2}+1^{2}}=\sqrt{2}
\end{aligned}
$$

As a result,

$$
\|\mathbf{x}+\mathbf{y}\|=2 \leq \sqrt{2}+\sqrt{2}=\|\mathbf{x}\|+\|\mathbf{y}\|
$$

which means the triangle inequality is satisfied.

